黄金城hjc30vip5678-官网版

   通知公告
 当前位置: 首页 >> 通知公告 >> 详细信息 < < 返回首页  
  山东理工大学徐夫义教授、华北水利水电大学王玉柱教授网络学术报告

发布时间:2022-06-28

1.山东理工大学徐夫义教授学术报告

报告题目:Some mathematical results for the Cauchy problem of the compressible two-fluid model

报告人:徐夫义 教授(山东理工大学)

报告时间:2022年6月30日(周四)上午9:00—11:30

腾讯会议ID:265 957 244

报告摘要:In this talk, we will introduce some mathematical results for the Cauchy problem of the compressible two-fluid model in spaces with critical regularity indices with respect to the scaling of the associated equations by employing harmonic analysis tools such as Littlewood-Paley theory, low-high frequency decomposition, and Bony's decomposition.

报告人简介:徐夫义,山东理工大学数学与统计学院教授,博士生导师。2013年7月毕业于北京航空航天大学数学与系统科学学院,获理学博士学位,主要从事流体动力学方程相关问题的研究。主持完成国家自然科学基金1项,山东省自然科学基金2项。已在Communications in Contemporary Mathematics,Nonlinearity,Journal of Mathematical Fluid Mechanics,Discrete and Continuous Dynamical Systems,Communications in Mathematical Sciences,Journal of Mathematical Physics,中国科学.数学等国内外期刊发表学术论文60余篇,SCI 检索50余篇。


2.华北水利水电大学王玉柱教授学术报告

报告题目:Global smooth solutions to the compressible Euler equations for Chaplygin gas and related models

报告人:王玉柱 教授(华北水利水电大学)

报告时间:2022年6月30日(周四)下午15:00—17:30

腾讯会议ID:265 957 244

报告摘要:In this topic, global smooth solutions to compressible Euler equations for Chaplygin gases and are investigated. For three dimensional Chaplygin gases, based on the new formulation of the compressible Euler equations introduced by J. Luk and J. Speck, we first show that the wave system satisfied by the modified density and the velocity for Chaplygin gases verifies the weak null condition. Then we can prove the global existence of the smooth solutions to the irrotational and isentropic Chaplygin gases without introducing the potential function when the initial data are prescribed as small perturbations to the given constant state. For two dimensional compressible Euler equations with the rotational Coriolis forcing, global smooth solutions are established under the assumption of small data and zero relative vorticity. The proof is based on the effect of Klein-Gordon equations, the L^\infty estimate, the ghost weight energy estimate and the bootstrap argument.

报告人简介:王玉柱,教授、博士生导师、河南省高层次人才、华北水利水电大学“大禹学者”特聘教授。在Comm.Partial Differential Equation、J.Differential Equations等期刊上发表论文50余篇。主持国家自然科学基金项目2项、主持河南省科技创新杰出青年项目、河南省高校科技创新人才支持计划及河南省高校重点科研项目基础研究专项各1项。主持、参与获省部级科学技术奖励4项。


中国 河南焦作 高新区 世纪路2001号 [454000](建议浏览器使用IE9以上版本)
版权所有  © 2017  河南理工大学 黄金城hjc30vip5678  校ICP备03110号
Baidu
sogou
XML 地图 | Sitemap 地图